日期:2023-05-29 08:42:55人气:6
1/cosx的原函数是ln|secx+tanx|+C。解答如下:
先算1/sinx原函数,S表示积分号
S1/sinxdx
=S1/(2sin(x/2)cos(x/2))dx
=S1/[tan(x/2)cos?(x/2)]d(x/2)
=S1/[tan(x/2)]d(tan(x/2))
=ln|zhitan(x/2)|+C
因为tan(x/2)=sin(x/2)/cos(x/2)=2sin?(x/2)/[2sin(x/2)cos(x/2)]=(1-cosx0/sinx=cscx-cotx
所以S1/sinxdx=ln|cscx-cotx|+C
S1/cosxdx
=S1/sin(x+派/2)d(x+派/2)
=ln|csc(x+派/2)-cot(x+派/2)|+C
=ln|secx+tanx|+C
语音朗读
声明: 本站所有文章来自互联网搜索结果, 如果侵犯到你的权益 请提供版权证明来信告知,我们会在3个工作日之内删除 本站为非赢利性网站 不接受任何赞助和广告
Copyright 2022-2023 32h.pingguodj.com 32号百科 客服邮箱:s2s2s2-s@outlook.com